AFLOW Prototype: AB_oP8_57_d_d-001
This structure originally had the label AB_oP8_57_d_d. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/E914
or
https://aflow.org/p/AB_oP8_57_d_d-001
or
PDF Version
Prototype | FTl |
AFLOW prototype label | AB_oP8_57_d_d-001 |
ICSD | 90992 |
Pearson symbol | oP8 |
Space group number | 57 |
Space group symbol | $Pbcm$ |
AFLOW prototype command |
aflow --proto=AB_oP8_57_d_d-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}$ |
PbO (massicot)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | F I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | F I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | F I |
$\mathbf{B_{4}}$ | = | $x_{1} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}- b \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | F I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Tl I |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | Tl I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Tl I |
$\mathbf{B_{8}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | Tl I |