Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_tI24_141_ae_be-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1GTY
or https://aflow.org/p/AB_tI24_141_ae_be-001
or PDF Version

β-LiSn Structure: AB_tI24_141_ae_be-001

Picture of Structure; Click for Big Picture
Prototype LiSn
AFLOW prototype label AB_tI24_141_ae_be-001
ICSD 107516
Pearson symbol tI24
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=AB_tI24_141_ae_be-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

Other compounds with this structure

LiGe


  • This is apparently the high-temperature structure of LiSn. Below 470K LiSn is in the monoclinic $\alpha$–LiSn structure (Villars, 2018).
  • We have shifted the origin so that a lithium atom is on the (4a) site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4a) Li I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4a) Li I
$\mathbf{B_{3}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4b) Sn I
$\mathbf{B_{4}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4b) Sn I
$\mathbf{B_{5}}$ = $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8e) Li II
$\mathbf{B_{6}}$ = $z_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Li II
$\mathbf{B_{7}}$ = $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8e) Li II
$\mathbf{B_{8}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Li II
$\mathbf{B_{9}}$ = $\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8e) Sn II
$\mathbf{B_{10}}$ = $z_{4} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Sn II
$\mathbf{B_{11}}$ = $- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8e) Sn II
$\mathbf{B_{12}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Sn II

References

  • W. Blase and G. Cordier, Crystal structure of β-Lithium stannide, β-LiSn, Z. Kristallogr. 193, 317–318 (1990), doi:10.1524/zkri.1990.193.14.317.
  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Lithium-Tin Binary Phase Diagram (1998 Sangster J.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=AB_tI24_141_ae_be --params=$a,c/a,z_{3},z_{4}$

Species:

Running:

Output: