Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_tP8_136_f_g-001

This structure originally had the label AB_tP8_136_g_f. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/FJT4
or https://aflow.org/p/AB_tP8_136_f_g-001
or PDF Version

β-BeO Structure: AB_tP8_136_f_g-001

Picture of Structure; Click for Big Picture
Prototype BeO
AFLOW prototype label AB_tP8_136_f_g-001
ICSD 18147
Pearson symbol tP8
Space group number 136
Space group symbol $P4_2/mnm$
AFLOW prototype command aflow --proto=AB_tP8_136_f_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}$

Other compounds with this structure

ZnO


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ (4f) Be I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}$ (4f) Be I
$\mathbf{B_{3}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Be I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Be I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (4g) O I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (4g) O I
$\mathbf{B_{7}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4g) O I
$\mathbf{B_{8}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4g) O I

References

  • D. K. Smith, C. F. Cline, and S. B. Austerman, The Crystal Structure of β-Beryllia, Acta Cryst. 18, 393–397 (1965), doi:10.1107/S0365110X65000877.

Prototype Generator

aflow --proto=AB_tP8_136_f_g --params=$a,c/a,x_{1},x_{2}$

Species:

Running:

Output: