Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cI16_220_c-001

This structure originally had the label A_cI16_220_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/BTF5
or https://aflow.org/p/A_cI16_220_c-001
or PDF Version

High-pressure cI16 Li Structure: A_cI16_220_c-001

Picture of Structure; Click for Big Picture
Prototype Li
AFLOW prototype label A_cI16_220_c-001
ICSD 109012
Pearson symbol cI16
Space group number 220
Space group symbol $I\overline{4}3d$
AFLOW prototype command aflow --proto=A_cI16_220_c-001
--params=$a, \allowbreak x_{1}$

Other compounds with this structure

Na (under pressure)


  • This is a high-pressure phase of lithium. We use the data from (Hanfland, 2000) at 38.9 GPa. When $x_{1} = 0$ this becomes a body-centered cubic ($A2$) system.
  • We have used the fact that all vectors of the form $(\pm a/2 \hat{x} \pm a/2 \hat{y} \pm a/2 \hat{z})$ are primitive vectors of the body-centered cubic lattice to simplify the positions of some atoms in both lattice and Cartesian coordinates.
  • The ICSD entry was recorded at 45 GPa.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+2 x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{3}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{4}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{5}}$ = $\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{7}}$ = $- 2 x_{1} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{8}}$ = $- 2 x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Li I

References

  • M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, New high-pressure phases of lithium, Nature 408, 174–178 (2000), doi:10.1038/35041515.

Prototype Generator

aflow --proto=A_cI16_220_c --params=$a,x_{1}$

Species:

Running:

Output: