Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hP4_194_ac-001

This structure originally had the label A_hP4_194_ac. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/9631
or https://aflow.org/p/A_hP4_194_ac-001
or PDF Version

α-La ($A3'$) Structure: A_hP4_194_ac-001

Picture of Structure; Click for Big Picture
Prototype La
AFLOW prototype label A_hP4_194_ac-001
Strukturbericht designation $A3'$
ICSD 43573
Pearson symbol hP4
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A_hP4_194_ac-001
--params=$a, \allowbreak c/a$

Other compounds with this structure

Am,  Bk,  Ce,  Cf,  Cm,  Nd,  Pm,  Pr


  • This crystal is close-packed, with stacking ABACABAC$…$, as opposed to ABAB$…$ for the hcp ($A3$) structure and ABCABC$…$ for the fcc ($A1$) lattice. The (2a) crystallographic sites (the A layer) form a simple hexagonal lattice. The (2c) sites (the B and C layers) form an hcp structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) La I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) La I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) La II
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) La II

References

  • F. H. Spedding, J. J. Hanak, and A. H. Daane, High temperature allotropy and thermal expansion of the rare-earth metals, J. Less-Common Met. 3, 110–124 (1961), doi:10.1016/0022-5088(61)90003-0.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_hP4_194_ac --params=$a,c/a$

Species:

Running:

Output: