Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_mP4_4_2a-001

This structure originally had the label A_mP4_4_2a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/H0F1
or https://aflow.org/p/A_mP4_4_2a-001
or PDF Version

High-pressure Te Structure: A_mP4_4_2a-001

Picture of Structure; Click for Big Picture
Prototype Te
AFLOW prototype label A_mP4_4_2a-001
ICSD 52501
Pearson symbol mP4
Space group number 4
Space group symbol $P2_1$
AFLOW prototype command aflow --proto=A_mP4_4_2a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • This is a high-pressure phase of tellurium, stable in the 4-7 GPa range. The ground state of Te appears to be in the $\gamma$Se ($A8$) structure.
  • We use the data taken by (Aoki, 1980) at 4.5 GPa.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Te I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Te I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Te II
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Te II

References

  • K. Aoki, O. Shimomura, and S. Minomura, Crystal Structure of the High-Pressure Phase of Tellurium, J. Phys. Soc. Japan 48, 551–556 (1980), doi:10.1143/JPSJ.48.551.

Prototype Generator

aflow --proto=A_mP4_4_2a --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: