AFLOW Prototype: A_mP8_10_2m2n-001
This structure originally had the label A_mP8_10_2m2n. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/XRQ1
or
https://aflow.org/p/A_mP8_10_2m2n-001
or
PDF Version
Prototype | C |
AFLOW prototype label | A_mP8_10_2m2n-001 |
ICSD | None |
Pearson symbol | mP8 |
Space group number | 10 |
Space group symbol | $P2/m$ |
AFLOW prototype command |
aflow --proto=A_mP8_10_2m2n-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$ |
superhardallotrope of iron. Shortly after this paper was published, two other papers predicted similar structures, differentiated mainly by an origin shift:
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | C I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | C I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | C II |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | C II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | C III |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | C III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | C IV |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | C IV |