Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_oC8_64_f-002

This structure originally had the label A_oC8_64_f.P. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/7VYH
or https://aflow.org/p/A_oC8_64_f-002
or PDF Version

Black Phosphorus ($A17$) Structure: A_oC8_64_f-002

Picture of Structure; Click for Big Picture
Prototype P
AFLOW prototype label A_oC8_64_f-002
Strukturbericht designation $A17$
ICSD 23836
Pearson symbol oC8
Space group number 64
Space group symbol $Cmce$
AFLOW prototype command aflow --proto=A_oC8_64_f-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8f) P I
$\mathbf{B_{2}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) P I
$\mathbf{B_{3}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) P I
$\mathbf{B_{4}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (8f) P I

References

  • A. Brown and S. Rundqvist, Refinement of the crystal structure of black phosphorus, Acta Cryst. 19, 684–685 (1965), doi:10.1107/S0365110X65004140.

Prototype Generator

aflow --proto=A_oC8_64_f --params=$a,b/a,c/a,y_{1},z_{1}$

Species:

Running:

Output: