Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_oP8_62_2c-001

This structure originally had the label A_oP8_62_2c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/L3MB
or https://aflow.org/p/A_oP8_62_2c-001
or PDF Version

α-Np ($A_{c}$) Structure: A_oP8_62_2c-001

Picture of Structure; Click for Big Picture
Prototype Np
AFLOW prototype label A_oP8_62_2c-001
Strukturbericht designation $A_{c}$
ICSD 105489
Pearson symbol oP8
Space group number 62
Space group symbol $Pnma$
AFLOW prototype command aflow --proto=A_oP8_62_2c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}$

  • Neptunium is found in three forms (Donohue, 1974):
  • (Zachariasen, 1952) describes this structure using the $Pmcn$ setting of space group #62. We transformed this to the standard $Pnma$ setting.
  • $\alpha$–Np and high-pressure orthorhombic Na have the same AFLOW prototype label, A_oP8_62_2c. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4c) Np I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Np I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (4c) Np I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Np I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4c) Np II
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Np II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4c) Np II
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Np II

References

  • W. H. Zachariasen, Crystal chemical studies of the 5f-series of elements. XVII. The crystal structure of neptunium metal, Acta Cryst. 5, 660–664 (1952), doi:10.1107/S0365110X52001799.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_oP8_62_2c --params=$a,b/a,c/a,x_{1},z_{1},x_{2},z_{2}$

Species:

Running:

Output: