Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_tI16_142_f-001

This structure originally had the label A_tI16_142_f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/GC8R
or https://aflow.org/p/A_tI16_142_f-001
or PDF Version

S-III Structure: A_tI16_142_f-001

Picture of Structure; Click for Big Picture
Prototype S
AFLOW prototype label A_tI16_142_f-001
ICSD none
Pearson symbol tI16
Space group number 142
Space group symbol $I4_1/acd$
AFLOW prototype command aflow --proto=A_tI16_142_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}$

Other compounds with this structure

Se (Se-VII,   prepared at 450K and 20 GPa)


  • The S-III phase is found when sulfur is pressurized above 36 GPa at 300K. At 300K it is stable up to 83 GPa. This data was taken at 12 GPa and 300K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(x_{1} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{3}}$ = $\left(x_{1} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{4}}$ = $- \left(x_{1} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{5}}$ = $- \left(x_{1} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{6}}$ = $\left(x_{1} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{7}}$ = $- \left(x_{1} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) S I
$\mathbf{B_{8}}$ = $\left(x_{1} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) S I

References

  • O. Degtyareva, E. Gregoryanz, M. Somayazulu, P. Dera, H. Mao, and R. J. Hemley, Novel chain structures in group VI elements, Nat. Mater. 4, 152–155 (2005), doi:10.1038/nmat1294.

Prototype Generator

aflow --proto=A_tI16_142_f --params=$a,c/a,x_{1}$

Species:

Running:

Output: