AFLOW Prototype: A_tI16_142_f-001
This structure originally had the label A_tI16_142_f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/GC8R
or
https://aflow.org/p/A_tI16_142_f-001
or
PDF Version
Prototype | S |
AFLOW prototype label | A_tI16_142_f-001 |
ICSD | none |
Pearson symbol | tI16 |
Space group number | 142 |
Space group symbol | $I4_1/acd$ |
AFLOW prototype command |
aflow --proto=A_tI16_142_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}$ |
Se (Se-VII, prepared at 450K and 20 GPa)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\left(x_{1} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{2}}$ | = | $- \left(x_{1} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{3}}$ | = | $\left(x_{1} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{4}}$ | = | $- \left(x_{1} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{5}}$ | = | $- \left(x_{1} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{6}}$ | = | $\left(x_{1} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{7}}$ | = | $- \left(x_{1} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |
$\mathbf{B_{8}}$ | = | $\left(x_{1} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (16f) | S I |