AFLOW Prototype: A_tP12_96_ab-001
This structure originally had the label A_tP12_96_ab. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/YUU3
or
https://aflow.org/p/A_tP12_96_ab-001
or
PDF Version
ST12Structure of Si: A_tP12_96_ab-001
Prototype | Si |
AFLOW prototype label | A_tP12_96_ab-001 |
ICSD | 16954 |
Pearson symbol | tP12 |
Space group number | 96 |
Space group symbol | $P4_32_12$ |
AFLOW prototype command |
aflow --proto=A_tP12_96_ab-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$ |
$\gamma$-Ge
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ | = | $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ | (4a) | Si I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4a) | Si I |
$\mathbf{B_{3}}$ | = | $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4a) | Si I |
$\mathbf{B_{4}}$ | = | $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4a) | Si I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{7}}$ | = | $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{8}}$ | = | $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{9}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{10}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{11}}$ | = | $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (8b) | Si II |
$\mathbf{B_{12}}$ | = | $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8b) | Si II |