Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_tP30_136_af2ij-001

This structure originally had the label A_tP30_136_bf2ij. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/5T44
or https://aflow.org/p/A_tP30_136_af2ij-001
or PDF Version

β-U ($A_{b}$) Structure: A_tP30_136_af2ij-001

Picture of Structure; Click for Big Picture
Prototype U
AFLOW prototype label A_tP30_136_af2ij-001
Strukturbericht designation $A_{b}$
ICSD 76166
Pearson symbol tP30
Space group number 136
Space group symbol $P4_2/mnm$
AFLOW prototype command aflow --proto=A_tP30_136_af2ij-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

  • Uranium has two structural phase transitions with temperature (Donohue, 1974):
  • According to (Donohue, 1982) there are three possible space groups which fit the diffraction data for $\beta$–U. This is the highest symmetry space group of the three. Except for a shift of the origin, this structure is isostructural with $\sigma$–CrFe ($D8_{b}$).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) U I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) U I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (4f) U II
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (4f) U II
$\mathbf{B_{5}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) U II
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) U II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (8i) U III
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (8i) U III
$\mathbf{B_{9}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U III
$\mathbf{B_{10}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U III
$\mathbf{B_{11}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U III
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U III
$\mathbf{B_{13}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8i) U III
$\mathbf{B_{14}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8i) U III
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (8i) U IV
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (8i) U IV
$\mathbf{B_{17}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U IV
$\mathbf{B_{18}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U IV
$\mathbf{B_{19}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U IV
$\mathbf{B_{20}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) U IV
$\mathbf{B_{21}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8i) U IV
$\mathbf{B_{22}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8i) U IV
$\mathbf{B_{23}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{24}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{25}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{26}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{27}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{28}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{29}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8j) U V
$\mathbf{B_{30}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8j) U V

References

  • J. C. W. Tucker and P. Senio, An improved determination of the crystal structure of β-uranium, Acta Cryst. 6, 753–760 (1953), doi:10.1107/S0365110X53002167.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_tP30_136_af2ij --params=$a,c/a,x_{2},x_{3},y_{3},x_{4},y_{4},x_{5},z_{5}$

Species:

Running:

Output: